libzahl

big integer library
git clone git://git.suckless.org/libzahl
Log | Files | Refs | README | LICENSE

commit d751d9d8edc2d1ea099674efecb04a5033428511
parent 5bfbc6a6984e2036bf39b15708647ac5fd003dc2
Author: Mattias Andrée <maandree@kth.se>
Date:   Fri, 13 May 2016 10:32:10 +0200

How you would calculate factorials efficiently

Signed-off-by: Mattias Andrée <maandree@kth.se>

Diffstat:
Mdoc/not-implemented.tex | 40++++++++++++++++++++++++++++++++++++++++
1 file changed, 40 insertions(+), 0 deletions(-)

diff --git a/doc/not-implemented.tex b/doc/not-implemented.tex @@ -174,6 +174,46 @@ important function for many combinatorial applications, therefore it may be implemented in the future if the demand is high enough. +An efficient, yet not optimal, implementation +of factorials that about halves the number of +required multiplications compared to the naïve +method can be derived from the observation + +\vspace{1em} +\( \displaystyle{ + n! = n!! ~ \lfloor n / 2 \rfloor! ~ 2^{\lfloor n / 2 \rfloor} +}\), $n$ odd. +\vspace{1em} + +\noindent +The resulting algorithm can be expressed + +\begin{alltt} + void + fact(z_t r, uint64_t n) + \{ + z_t p, f, two; + uint64_t *ns, s = 1, i = 1; + zinit(p), zinit(f), zinit(two); + zseti(r, 1), zseti(p, 1), zseti(f, n), zseti(two, 2); + ns = alloca(zbits(f) * sizeof(*ns)); + while (n > 1) \{ + if (n & 1) \{ + ns[i++] = n; + s += n >>= 1; + \} else \{ + zmul(r, r, (zsetu(f, n), f)); + n -= 1; + \} + \} + for (zseti(f, 1); i-- > 0; zmul(r, r, p);) + for (n = ns[i]; zcmpu(f, n); zadd(f, f, two)) + zmul(p, p, f); + zlsh(r, r, s); + zfree(two), zfree(f), zfree(p); + \} +\end{alltt} + \subsection{Subfactorial} \label{sec:Subfactorial}