commit b8f83987b190e282fd25c24e1c251678ad757765
parent faaa7dc980a80895b703775d18132eb6db105021
Author: Mattias Andrée <maandree@kth.se>
Date: Wed, 27 Jul 2016 03:58:35 +0200
Add exercice: [▶10] Modular powers of 2
Signed-off-by: Mattias Andrée <maandree@kth.se>
Diffstat:
1 file changed, 17 insertions(+), 0 deletions(-)
diff --git a/doc/exercises.tex b/doc/exercises.tex
@@ -38,6 +38,14 @@ which calculates $r = a \dotminus b = \max \{ 0,~ a - b \}$.
+\item {[$\RHD$\textit{10}]} \textbf{Modular powers of 2}
+
+What is the advantage of using \texttt{zmodpow}
+over \texttt{zbset} or \texttt{zlsh} in combination
+with \texttt{zmod}?
+
+
+
\item {[\textit{M10}]} \textbf{Convergence of the Lucas Number ratios}
Find an approximation for
@@ -219,6 +227,15 @@ void monus(z_t r, z_t a, z_t b)
\end{alltt}
+\item \textbf{Modular powers of 2}
+
+\texttt{zbset} and \texttt{zbit} requires $\Theta(n)$
+memory to calculate $2^n$. \texttt{zmodpow} only
+requires $\mathcal{O}(\min \{n, \log m\})$ memory
+to calculate $2^n \text{ mod } m$. $\Theta(n)$
+memory complexity becomes problematic for very
+large $n$.
+
\item \textbf{Convergence of the Lucas Number ratios}