libzahl

big integer library
git clone git://git.suckless.org/libzahl
Log | Files | Refs | README | LICENSE

commit 4d2e79e7eec793a557c26d1253bcfc13f6b555d6
parent 243a542dce0f8da6fc3ac43d5e5fcb144559b507
Author: Mattias Andrée <maandree@kth.se>
Date:   Mon, 25 Jul 2016 15:58:29 +0200

Style fix

Signed-off-by: Mattias Andrée <maandree@kth.se>

Diffstat:
Mdoc/exercises.tex | 8++++----
1 file changed, 4 insertions(+), 4 deletions(-)

diff --git a/doc/exercises.tex b/doc/exercises.tex @@ -168,13 +168,13 @@ For improved performance, instead of using \texttt{zmod}, you can use the recursive function % \( \displaystyle{ - k ~\mbox{Mod}~ 2^n - 1 = + k \mod (2^n - 1) = \left ( - (k ~\mbox{Mod}~ 2^n) + \lfloor k \div 2^n \rfloor - \right ) ~\mbox{Mod}~ 2^n - 1, + (k \mod 2^n) + \lfloor k \div 2^n \rfloor + \right ) \mod (2^n - 1), }\) % -where $k ~\mbox{Mod}~ 2^n$ is efficiently calculated +where $k \mod 2^n$ is efficiently calculated using \texttt{zand($k$, $2^n - 1$)}. (This optimisation is not part of the difficulty rating of this problem.)