libzahl

big integer library
git clone git://git.suckless.org/libzahl
Log | Files | Refs | README | LICENSE

commit 32f59d5fbed9dbfa913221ef37d8df9364b9963a
parent 2864613b162ed4c7a28a79c8c4dcd24893cc2128
Author: Mattias Andrée <maandree@kth.se>
Date:   Thu, 28 Jul 2016 20:12:19 +0200

Add exercises:

[▶05] zlshu and zrshu
[▶M15] Modular left-shift
[▶08] Modular left-shift, extended
[13] The totient

Diffstat:
Mdoc/exercises.tex | 134+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 134 insertions(+), 0 deletions(-)

diff --git a/doc/exercises.tex b/doc/exercises.tex @@ -207,6 +207,67 @@ $\varphi$ is the golden ratio. +\item {[\textit{$\RHD$05}]} \textbf{zlshu and zrshu} + +Why does libzahl have + +\vspace{-1em} +\begin{alltt} + void zlsh(z_t, z_t, size_t); + void zrsh(z_t, z_t, size_t); +\end{alltt} +\vspace{-1em} + +\noindent +rather than + +\vspace{-1em} +\begin{alltt} + void zlsh(z_t, z_t, z_t); + void zrsh(z_t, z_t, z_t); + void zlshu(z_t, z_t, size_t); + void zrshu(z_t, z_t, size_t); +\end{alltt} +\vspace{-1em} + + + +\item {[$\RHD$M15]} \textbf{Modular left-shift} + +Implement a function that calculates +$2^a \text{ mod } b$, using \texttt{zmod} and +only cheap functions. You can assume $a \ge 0$, + $b \ge 1$. You can also assume that all +parameters are unique pointers. + + + +\item {[$\RHD$08]} \textbf{Modular left-shift, extended} + +{\small\textit{You should already have solved +``Modular left-shift'' before you solve this +problem.}} + +Extend the function you wrote in ``Modular left-shift'' +to accept negative $b$ and non-unique pointers. + + + +\item {[13]} \textbf{The totient} + +The totient of $n$ is the number of integer $a$, +$0 < a < n$ that are relatively prime to $n$. +Implement Euler's totient function $\varphi(n)$ +which calculates the totient of $n$. Its +formula is + +\( \displaystyle{ + \varphi(n) = n \prod_{p \in \textbf{P} : p | n} + \left ( 1 - \frac{1}{p} \right ). +}\) + + + \end{enumerate} @@ -228,6 +289,7 @@ void monus(z_t r, z_t a, z_t b) zsetu(r, 0); \} \end{alltt} +\vspace{-1em} \item \textbf{Modular powers of 2} @@ -372,6 +434,7 @@ ptest_fast(z_t p) return c ? NONPRIME : PROBABLY_PRIME; \} \end{alltt} +\vspace{-1em} @@ -420,6 +483,7 @@ ptest_fermat(z_t witness, z_t p, int t) return rc; \} \end{alltt} +\vspace{-1em} @@ -539,6 +603,76 @@ golden_pow(z_t r, z_t n) lucas(r, n); \} \end{alltt} +\vspace{-1em} + + + +\item \textbf{zlshu and zrshu} + +You are in big trouble, memorywise, of you +need to evaluate $2^{2^{64}}$. + + + +\item \textbf{Modular left-shift} + +\vspace{-1em} +\begin{alltt} +void modlsh(z_t r, z_t a, z_t b) +\{ + z_t t, at; + size_t s = zbits(b); + + zinit(t), zinit(at); + zset(at, a); + zsetu(r, 1); + zsetu(t, s); + + while (zcmp(at, t) > 0) \{ + zsub(at, at, t); + zlsh(r, r, t); + zmod(r, r, b); + if (zzero(r)) + break; + \} + if (!zzero(a) && !zzero(b)) \{ + zlsh(r, r, a); + zmod(r, r, b); + \} + + zfree(at), zfree(t); +\} +\end{alltt} +\vspace{-1em} + +It is worth noting that this function is +not necessarily faster than \texttt{zmodpow}. + + + +\item \textbf{Modular left-shift, extended} + +The sign of \texttt{b} shall not effect the +result. Use \texttt{zabs} to create a copy +of \texttt{b} with its absolute value. + + + +\item \textbf{The totient} + +\( \displaystyle{ + \varphi(n) + = n \prod_{p \in \textbf{P} : p | n} \left ( 1 - \frac{1}{p} \right ) + = n \prod_{p \in \textbf{P} : p | n} \left ( \frac{p - 1}{p} \right ) +}\) + +\noindent +So, if we set $a = n$ and $b = 1$, then we iterate +of all integers $p$, $2 \le p < n$. For which $p$ +that is prime, we set $a \gets a \cdot (p - 1)$ and +$b \gets b \cdot p$. After the iteration, $b | a$, +and $\varphi(n) = \frac{a}{b}$. +