**commit** 91881e515fe1d295c7a5f26c7a79532746fba7f3
**parent** a72b716d241c2ef797482a5e4ebd6731a010fd03
**Author:** Mattias Andrée <maandree@kth.se>
**Date:** Fri, 13 May 2016 20:50:39 +0200
Minor fix to the text
Signed-off-by: Mattias Andrée <maandree@kth.se>
**Diffstat:**

1 file changed, 2 insertions(+), 2 deletions(-)

**diff --git a/doc/number-theory.tex b/doc/number-theory.tex**
@@ -216,8 +216,8 @@ $\gcd(w, a)$ can be used to extract a factor
of $a$. This factor is however not necessarily,
and unlikely so, prime, but can be composite,
or even 1. In the latter case this becomes
-utterly useless, and therefore using this
-method for prime factorisation is a bad idea.
+utterly useless. Therefore using this method
+for prime factorisation is a bad idea.
Below is pseudocode for the Miller–Rabin primality
test with witness return.