libzahl

big integer library
git clone git://git.suckless.org/libzahl
Log | Files | Refs | README | LICENSE

commit 183bfa766f29b3eb46b01c7b6e82d71d822b02d5
parent 87e84a9167666022bba7c73b5447791bf9f6797b
Author: Mattias Andrée <maandree@kth.se>
Date:   Fri, 21 Oct 2016 05:25:03 +0200

manual: fix truncated sentence

Signed-off-by: Mattias Andrée <maandree@kth.se>

Diffstat:
doc/exercises.tex | 6+++---
1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/doc/exercises.tex b/doc/exercises.tex @@ -286,9 +286,9 @@ Implement the function which calculates the totient $t = \varphi(n)$, where $n = \displaystyle{\prod_{i = 1}^n P_i^{K_i}} > 0$, and $P_i = \texttt{P[i - 1]} \in \textbf{P}$, -$K_i = \texttt{K[i - 1]} \ge 1$. All values \texttt{P}. -\texttt{P} and \texttt{K} make up the prime factorisation -of $n$. +$K_i = \texttt{K[i - 1]} \ge 1$. All values \texttt{P} +are mutually unique. \texttt{P} and \texttt{K} make up +the prime factorisation of $n$. You can use the following rules: